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Introduction

• Out-of-distribution (OOD): From the perspective of a 
machine learning (ML) model, data that is different from the 
training data.

• OOD evaluation is important for biochemistry because 
models are expected to predict the properties of new 
molecules. More accurate estimations lead to more trust by 
the experimental community.

• We present CCPart, a new dataset partitioning algorithm 
that creates the most OOD training-testing splits possible 
given a dataset.

• We build a new mathematical framework for defining OOD 
generalisation as a function of molecular similarity. We 
define a new generalisation metric, the AU-GOOD.

• We present Hestia, a suite of Python tools for leveraging 
and implementing this new framework across a variety of 
biomolecules (e.g. biosequences, protein structures, small 
drug-like organic compounds, etc.).

CCPart algorithm

 Training

 Testing

1. Calculate all pairwise similarities between the 
biomolecules in the dataset.

2. Given a similarity threshold, define a graph where the 
nodes are the biomolecules and the edges the similarities 
above the threshold.

3. Identify all unconnected subgraphs within that graph.

4. Iteratively assign the smallest unconnected subgraphs to 
testing subset until it reaches the desired size.
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Understanding Molecular Language 
Models: A case study
• Molecular Language Models tend generalize better to tasks 

mediated by short-range patterns

• Current tasks for DNA language models are not effective for 
testing model generalisation

Protein tasks

Small molecule tasks

DNA tasks

Availability

Links to source code (Github Repository) and the biorxiv pre-print 
can be found through the QR-code: 

Mathematical framework

• Model: 𝑓𝜃 𝑥 ≃ 𝑦 where 𝑥, 𝑦  ~ 𝒵

• Partitioning strategy: Φ: 𝒵 → 𝒯, ℰ 

• Training subset: 𝒯
• Evaluation subset: ℰ

• Population risk: ℛ 𝜃 = 𝔼 x,y  ~ 𝒵 ℒ 𝑓𝜃 𝑥 , 𝑦

• Empirical risk: ෠𝑅𝐸 =
1

𝑛
σ𝑖=1

𝑛 ℒ(𝑓𝜃,𝒯 𝑥𝑖 , 𝑦𝑖)

• Similarity-based partitioning: Φ𝜆𝑆

• Empirical risk as function of similarity:

    ෠𝑅ℰ~Φ(𝒵,𝜆𝑆) =
1

𝑛
σ𝑖=1

𝑛 ℒ(𝑓𝜃,𝒯~Φ(𝒵,𝜆𝑆) 𝑥𝑖 , 𝑦𝑖)

• Generalisation to new data (𝒲) definition:

    𝒢 Φ 𝒵 𝒲 = 𝔼Φ(𝒵) ෠𝑅ℰ~Φ(𝒵|𝒲) =

       = ׬
0

1 ෠𝑅ℰ~Φ 𝒵 𝒲 𝑝 𝜆𝑆 𝒲 𝑑𝜆𝑆

• Geometrical interpretation: area under the

generalisation to OOD data (AU-GOOD) curve

Biomolecular similarity

Function 𝒮 𝑥𝑖 , 𝑥𝑗  such that:

• It is normalized: 𝒮 ∈ 0, 1

• It is symmetric: 𝒮 𝑥𝑖 , 𝑥𝑗 = 𝒮 𝑥𝑗 , 𝑥𝑖

• The similarity between a molecule and itself is maximal:

 𝒮 𝑥𝑖 , 𝑥𝑖 = 1

Examples of molecular similarity metrics:

• Sequence identity (or e-value) in sequence alignment

• Tanimoto similarity between molecular fingerprints

• TM-score between protein structural alignments

• Manhattan (or Hamming) distance between multi-point 
mutants

Understanding Molecular Language 
Models: A case study
• Molecular language models are machine learning models 

that model the conditional probability of a token (minimal 
component) in a molecule given the rest of the molecule 

(𝑝 𝑡𝑖 𝑚−𝑡𝑖
).

•  Experiments:

• Settings: All models are finetuned for 20 epochs with a 
MLP layer for classification/regression

• Protein Language Model (ESM2 8M): similarity metric is 
sequence identity in MMSeqs2 pairwise alignments (with 
k-mer prefiltering).

• SMILES Language Model (MolFormer-XL): similarity 
metric is Tanimoto similarity with extended-connectivity 
fingerprints (ECFP) with radius 2 and 1,204 bits.

• DNA Language Model (multi-species 
NucleotideTransformer 250M): similarity metric is 
sequence identity in MMSeqs2 pairwise alignments (with 
k-mer prefiltering).

Protein Language Model pretraining 
examination

• AU-GOOD as generalization metric to compare between 
models.

• Experiments:

• Reset: No pre-training. Model weights randomly 
initialized.

• Resample: Gross statistics. Model weights randomly 
permuted.

• Freeze: Model weights frozen. Only finetuning the MLP 
head.

• Full: Full model finetuning.

• Results: Model size scaling improves generalization both for 
local range tasks like secondary structure prediction and 
subcellular localization

• Future work: examining global range tasks like enzyme 
classification or thermostability
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