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Can we leverage data on cheaper
experiments to prioritise more
expensive experiments?

Synthetic peptides and peptidomimetics
(expensive but better drugs)
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(cheap)
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Objectives

1. How to automatically build peptide property prediction
models (and evaluate them)

2.How to extrapolate from standard to modified peptides
or peptidomimetics
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Part 1 — Automating ML for
natural peptides



dizb
AutoPeptideML

R. Fernadndez-Diaz et al
AutoPeptideML: a study on how
to build more trustworthy
peptide biocactivity

’

[« . - )
More information
Objecti
predictors, Bioinformatics
Volume 40, Issue 9, September
2024, btaeb555

and contact info

Design Requirements

Generates Collects
Experlments data data
‘ 1. Easy to use
2. Competitive performance
3. Reliable evaluation so that
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and contact info Automating ML for natural AutoPeptideML

R. Fernandez-Diaz et al.,

AutoPeptideML: a study on how

||
to build more trustworthy
e I es peptide biocactivity
predictors, Bioinformatics,

Volume 40, Issue 9, September
2024, btae555
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Collected 18 \
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Automating ML for natural
peptides

1.0

0.8

0.6

0.4 5

Matthew's correlation coefficient
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Handcrafted models
from literature

di%b
AutoPeptideML

R. Ferndndez-Diaz et al.,
AutoPeptideML: a study on how
to build more trustworthy
peptide biocactivity
predictors, Bioinformatics,
Volume 40, Issue 9, September
2024, btae555
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R. Fernadndez-Diaz et al.,
AutoPeptideML: a study on how

|
to build more trustworthy
e I e s peptide biocactivity
predictors, Bioinformatics,

Volume 40, Issue 9, September
2024, btae555
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peptides

Webserver - GUI CLI tool

¥

| AutoPeptideML v.2.0.3 |

utoPeptideML

BIOINFORMATICS ~ PUBLICATION | CHEMRXIV ) GITHUB REPOSITORY

Model builder

Part 1 - Define the data and preprocessing steps
Welcome to the AutoPeptideML webserver. [?] What is the modelling problem you're facing?:

The next steps will help you build your own model.

Regression(returnin continuous value)
0. Modelling task
First, start by defining the prediction task.

What s the prediction problem you are facing?

Classification (categorical values) v

1. Inputs
In this section you will define the data from which you want the model to learn.
Download sample dataset &

Please upload dataset with your peptides and their labels if available

®

Drag and drop file here Browse files

Limit perfile

(g\&/b

and contact info Automating ML for natural utoPeptideML

R. Ferndndez-Diaz et al.,
AutoPeptideML: a study on how
to build more trustworthy
peptide biocactivity
predictors, Bioinformatics,
Volume 40, Issue 9, September
2024, btae555

Python Package

df = pd.read_csv{osp.join(PATH, 'original_data', f'c-{dataset}.csv'))
apml = AutoPeptideML(
data=df,
outputdir=f'apml-{dataset}',
sequence_field="'SMILES',
label_field="1labels"
)
apml.build_models (
task="class',
reps=['esm2-8m', 'peptideclm', 'chemberta-2', 'ecfp-16'1,
models=['svm', 'knn', 'rf', 'lightgbm', 'xgboost'l],
device="'mps',
n_trials=10
)
apml.create_report()
return apml
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Automating ML for natural
peptides - Conclusions

1. Automation achieves model performance on par with
manually engineered previous studies

2. Proper automation leads to more robust model

evaluation

3. Previous studied tended to overestimate model

performance, due to:
a) Negative sampling strategy

b) Data leakage from similar peptides in training and
testing

(S\SII/E)
AutoPeptideML

R. Ferndndez-Diaz et al.,
AutoPeptideML: a study on how
to build more trustworthy

peptide biocactivity
predictors, Bioinformatics,
Volume 40, Issue 9, September
2024, btae555
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Computational experiments e e

models able to extrapolate
from standard to modified

peptides. ChemRxiv. 2025;
doi:10.26434/chemrxiv-2025-
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e Computational experiments e

to build machine learning
models able to extrapolate
from standard to modified
peptides. ChemRxiv. 2025;
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Natural peptides
‘ Train and test

Small digression: Should we use sequence
alignment for measuring peptide similarity?

4 )

Similarity-informed
train/test split
~ &,

Research Training in
“) GENOMICS \_ /
<[ DATA SCIENCE

Synthetic peptides and
peptidomimetics

/!l




/More information\

and contact info

Hestia-GOOD framework

Finding the best similarity metric

ICLR
2025

Fernandez-Diaz R, et al. A new
framework for evaluating model
out-of-distribution generalisation
for the biochemical domain. InThe
Thirteenth International
Conference on Learning
Representations 2025.

GOOD curve

Model performance as a
function of train-test similarity
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Similarity metric selection

Quantitative analysis of best similarity
function for a given task/dataset

N

Monotonicity
(Spearman’s p)

& »

Dynamic range

Model
performance

»

Similarity

* Monotonicity: Is model performance
a function of train-test similarity?

+ Dynamic range: What is the
resolution of the similarity metric?

Model

Weighted model

AU-GOOD metric

Estimation of model performance
conditioned on a deployment distribution
4 GOOD Curve Deployment
o distribution
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Best metrics for each dataset

ICLR
2025

Fernandez-Diaz R, et al. A new
framework for evaluating model
out-of-distribution generalisation
for the biochemical domain. InThe
Thirteenth International
> on Learning
ations 2025.

Analysis of 8

datasets:

* 4 natural
* 4 synthetic
e Chemical FPs are
better than
sequence
alignment for
natural peptides

e
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Dataset Peptide type Task Similarity Type Similarity Dynamic Monotonicity
range (1) [a] (1) [b]
Protein-peptide Standard Regression Chemical FP MAPc-8 70 % 0.8x0.1
binding affinity
Protein-peptide Modified Regression Chemical FP MAPc-20 80 % 0.95 4+ 0.03
binding affinity
Cell penetration  Standard Classification Chemical FP MAPc-8 60 % 0.98 £0.04
Cell penetration  Modified Classification Chemical FP MAPc-12 60 % 0.5+0.2
Antibacterial Standard Classification Chemical FP MAPc-8 60 % 0.97 £0.02
Antibacterial Modified Classification Chemical FP ECFP-12 50 % 0.9+01
Antiviral Standard Classification = Sequence Alignment MMSeqs2 80 % 0.96 + 0.05
Antiviral Modified Classification Chemical FP MAPc-12 70 % 0.6 £0.2
Metrics explored:
- ECFP various radii - Needleman-Wunsch (alignment)
- MAPc various radii - ESM2-8M embedding distance

MMSeqgs2 (alignment) - Molformer-XL embedding distance
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Chem

Ferndndez-Diaz R, et al. How
to build machine learning
models able to extrapolate
from standard to modified
peptides. ChemRxiv. 2025;
doi:10.26434/chemrxiv-2025-

ggp8n-v3

Interpolation experiments

* Averageondg \

datasets.

» Statistical analysis are
Kruskal-Wallis with
post-hoc Wilcoxon

Representation Family
s PLM e CLM B Chemical FP BN Peptide FP W Peptide LM/GNN

test. Sequences Small molecule Small molecule Peptide Peptide
« Significance defined SMILES Cheminformatics Cheminformatics SMILES
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* Averageondg
datasets.

» Statistical analysis are
Kruskal-Wallis with
post-hoc Wilcoxon
test.

* Significance defined
with Bonferroni
correction.
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Representation

Interpolation experiments

Avalon FP
PepFuNN
Molformer-XL
Pepland
PeptideCLM
ChemBERTa-2
ProtBERT
ECFP-16
ESM2 150M
Prot-T5-XL
ECFP-16 counts
ESM2 650M
ESM2 8M

Natural to natural

Chem: v

Fernandez-Diaz R, et al. How
to build machine learning
models able to extrapolate
from standard to modified

. ChemRxiv. 2025;

Synthetic to synthetic 134/chemrxiv-2025-

jgp8n-v3
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Natural to natural

* Averageondg
datasets.

» Statistical analysis are
Kruskal-Wallis with
post-hoc Wilcoxon
test.

* Significance defined
with Bonferroni
correction.

s
4 GENOMICS Representation Family

DATA SCIENCE

BN PLM e CLM B Chemical FP W Peptide FP

PepFuNN
Pepland
ESM2 8M
ESM2 150M
ECFP-16 counts
ESM2 650M
PeptideCLM
ECFP-16
Avalon FP
ProtBERT
Prot-T5-XL
ChemBERTa-2
Molformer-XL

Interpolation experiments

Chem: v

Fernandez-Diaz R, et al. How
to build machine learning
models able to extrapolate
from standard to modified

. ChemRxiv. 2025;

Synthetic to synthetic 134/chemrxiv-2025-

jgp8n-v3
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* Averageondg
datasets.

» Statistical analysis are
Kruskal-Wallis with
post-hoc Wilcoxon
test.

* Significance defined
with Bonferroni
correction.
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Representation

Interpolation experiments

Natural to natural

Avalon FP
PepFuNN
Molformer-XL

Pepland

PeptideCLM

ChemBERTa-2

ProtBERT

ECFP-16

ESM2 150M

Prot-T5-XL

ECFP-16 counts

ESM2 650M

ESM2 8M

I 1 I 1
0.2 0.4 0.6 0.8
Average performance on test sets

1.0

Representation Family
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BN Peptide FP

PepFuNN
Pepland

ESM2 8M
ESM2 150M
ECFP-16 counts
ESM2 650M
PeptideCLM
ECFP-16
Avalon FP
ProtBERT

Chem: v

Fernandez-Diaz R, et al. How
to build machine learning
models able to extrapolate
from standard to modified

. ChemRxiv. 2025;

Synthetic to synthetic 134/chemrxiv-2025-

jgp8n-v3

ChemBERTa-2

Molformer-XL
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to build machine learning
models able to extrapolate
from standard to modified
peptides. ChemRxiv. 2025;

Natural peptides doi:10.26434/chemrxiv-2025-
ggp8n-v3

ESM2 8M
ESM2 650M
* Average on 4 PeptideCLM
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Statistical a n.alys'ls are E Train // test
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Natural to synthetic extrapolation

ESM2 8M

* Averageondg
datasets.

test.

with Bonferroni
correction.

» Statistical analysis are
Kruskal-Wallis with
post-hoc Wilcoxon

* Significance defined

ESM2 650M

\ PeptideCLM
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ProtBERT
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Representation
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ECFP-16 counts

PepFuNN
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Average performance on test sets
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Ferndndez-Diaz R, et al. How
to build machine learning
models able to extrapolate
from standard to modified
peptides. ChemRxiv. 2025;
doi:10.26434/chemrxiv-2025-

ggp8n-v3

Conclusions

Natural to synthetic
extrapolation is possible, but
models are less reliable
ChemBERTa-2 appears to be
the most versatile tool to
work with peptides
Chemical and Peptide
Fingerprints are robust
options as well

B Peptide LM/GNN
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Conclusions

AutoPeptideML empowers experimental scientist to build their own models

Dataset building (negative definition) and partitioning (train/test split) are
key for proper model evaluation

Chemical fingerprints are better for partitioning natural and synthetic
datasets than sequence alighment.

Natural to synthetic extrapolation is possible, but there is room for
Improvement

ChemBERTa-2 appears to be the most versatile tool, closely followed by
chemical fingerprints
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